Revolution auf dem Bauernhof
Wissen

Revolution auf dem Bauernhof

Die CRISPR/Cas-Methode wird Teilbereiche der Pflanzenzüchtung revolutionieren. Die Technologie ist dringend nötig, um die Herausforderungen zu bewältigen, die sich der Landwirtschaft in diesem Jahrhundert gegenüberstellen und unsere Versorgungssicherheit gefährden.

Mittwoch, 13. April 2022

ETH-Professor Bruno Studer äusserte sich an einem Vortrag zu den Chancen, welche neue Züchtungstechnologien – insbesondere CRISPR/Cas – der Landwirtschaft bieten. Diese sieht sich grossen Herausforderungen gegenüber. Zu diesen Herausforderungen gehört natürlich der Klimawandel. Dabei sind für die Landwirtschaft gemäss Bruno Studer nicht die langsam ansteigenden Temperaturen kritisch. Viel einflussreicher auf die Produktion sind die mit dem Klimawandel zunehmenden extremen Wetterereignisse wie Hitzewellen, Trockenperioden oder aber auch heftige Niederschläge.

Prof. Dr. Bruno Studer referiert über die Chancen der Genschere CRISPR/Cas9 für eine ressourceneffiziente Landwirtschaft. (Video: ETH Treffpunkt Science City)

Sie befördern die Verbreitung und Entwicklung von Pflanzenpathogenen (Pflanzenkrankheiten), die bisher in unseren Breitengraden nicht oder nur sehr selten aufgetreten sind. Daraus folgt, dass es auch in Zukunft einen ökologisch verträglichen Einsatz von Pflanzenschutzmitteln braucht. Ebenso wichtig ist gemäss Studer aber die Pflanzenzüchtung. Um den neuen klimatischen Gegebenheiten trotzen zu können, müssen Pflanzen auch «genetisch fit gemacht» werden, so Studer. Eine starke Pflanzenzüchtung ist daher ein tragender Pfeiler einer künftigen nachhaltigen Landwirtschaft.


Was ist Pflanzenzüchtung?

Züchtung bedeutet, Pflanzen genetisch zu verändern. Dies ist nichts Neues. Die Menschheit züchtet Pflanzen schon seit mehr als 12'000 Jahren. Die meisten unserer Nutzpflanzen, wie wir sie heute kennen, sind durch sogenannte Auslesezüchtung entstanden. Dabei wurde Jahrzehnte oder sogar Jahrhunderte lang auf spontan auftretende Mutationen gewartet. Wurden bei einer Pflanze neue Eigenschaften entdeckt, wählten die Menschen diese Pflanzen als neue Generation aus. Erst mit der Entdeckung der Genetik durch Johann Gregor Mendel wurde es möglich, gut zu kombinierende Genome mittels Kreuzungszüchtung auszunutzen. Doch auch hier bestimmte der Zufall, wie sich die Gene letztlich kombinierten.

Seit den 1940er-Jahren werden Pflanzen radioaktiv bestrahlt oder mit Chemikalien behandelt, um aktiv genetische Mutationen herbeizuführen. Das Prinzip ist hochinvasiv und zufällig. Der europäische Sortenkatalog umfasst über 3500 Pflanzensorten von fast 200 Pflanzenarten, die mittels dieser sogenannt klassischen Mutagenese entstanden sind. Dazu gehören die meisten Braugersten, Pastaweizen und ironischerweise auch jene Weizensorten, die im biologischen Landbau besonders gut funktionieren. Ab den 1950er-Jahren entstand mit der sogenannten Gewebekultur eine Technik zur Optimierung der Kreuzungszüchtung. Sie bildete aber auch den Vorläufer zur Gentechnik, die dann in den 1990er-Jahren ihren Durchbruch erlebte.

Eine der neuesten Technologien in der Pflanzenzüchtung stellt jedoch die Genom-Editierung dar. Sie bezeichnet verschiedene Methoden, mit denen sich Erbinformation mittels Designer-Endonukleasen (eine Gruppe von Enzymen) gezielt modifizieren lassen. Diese sind jedoch meistens sehr komplex und aufwendig in der Herstellung. CRISPR/Cas9 – auch als die bedeutendste Genschere bezeichnet – stellt die neuartigste und effizienteste dieser Endonukleasen dar. Sie kann genau so programmiert werden, dass sie nur an exakt der gewünschten Stelle im Erbgut aktiv wird. Damit bietet CRISPR/Cas9 eine bis anhin ungekannte Präzision bei der Modifizierung von DNA. Ihre Entdeckerinnen wurden im Jahr 2020 mit dem Nobelpreis für Chemie ausgezeichnet.


Inspiriert von Bakterien

Das CRISPR/Cas-System stammt ursprünglich aus Bakterien. Auch Bakterien werden von Viren, sogenannten Bakteriophagen infiziert. CRISPR/Cas stellt eine Art Immunsystem für Bakterien dar, in dem es virale DNA erkennt, mit einem scherenartigen Konstrukt zerschneidet und damit unschädlich macht. Dasselbe Prinzip funktioniert auch in Pflanzenzellen. Dort nutzen Forscherinnen und Forscher das CRISPR/Cas-System, um die Pflanzen-DNA an einer vorher bestimmten Stelle zu zerschneiden. Die Zelle reagiert auf diese Schnittstelle mit Reparaturarbeiten. Bei diesem Prozess kommt es zu kleinen Fehlern, die Forscherinnen und Forscher ausnutzen, um beispielsweise ein bestimmtes Gen abzuschalten.

Der Zelle kann jedoch auch eine «Anleitung» gegeben werden, wie sie die Schnittstelle reparieren muss. Dabei lassen sich DNA-Abschnitte von der gleichen Pflanze (cisgen) oder von artfremden Pflanzen (transgen) einfügen. Die Genschere CRISPR/Cas erzeugt also an einer vorbestimmten Stelle im Erbgut einer Pflanze entweder Mutationen oder Genomveränderungen. Mutationen im Erbgut sind ein natürlicher Vorgang und passieren ständig und spontan. Je nach Anwendung können einzelne durch CRISPR/Cas erzeugte Mutationen nicht von spontan auftretenden Mutationen unterschieden werden.


Pflanzen resistenter gegen Krankheiten oder Wetterunbill machen

Wie lässt sich die Genschere CRISPR/Cas konkret in der Pflanzenzucht und in der Landwirtschaft sinnvoll einsetzen? Gemäss Studer ist die Technologie eine gute Möglichkeit, um den Genpool von Nutzpflanzen zu erweitern. Im Laufe der Jahrhunderte und Jahrtausende wurden Nutzpflanzen so stark selektioniert und weitergezüchtet, dass die genetische Vielfalt auf der Strecke blieb. Mit CRISPR/Cas könnte man beispielsweise gewisse Toleranzen – beispielsweise gegen Trockenstress – wieder zurück in den Züchtungsgenpool bringen.


Wirkungsvoll gegen Mehltau

Toleranzen sind im Hinblick auf den Klimawandel und der damit verbundenen Erhöhung des Schädlingsdrucks besonders wichtig. Ein Feind vieler Landwirte ist der Mehltau. Die Pilzkrankheit tritt vor allem bei nasskalter Witterung auf und verursacht in gewissen Jahren bis zu 40 Prozent Ernteausfälle. Ein wichtiger Faktor dafür, ob eine Pflanze von Mehltau befallen wird, stellt das sogenannte MLO-Gen dar. Es unterdrückt die Abwehr von Pflanzen gegen den Mehltau. Mit der Genom-Editierung ist es möglich, die MLO-Gene gezielt zu deaktivieren und die Abwehrmechanismen einer Pflanze gegenüber Mehltau zu stärken. Mit konventioneller Pflanzenzüchtung ist die Abschaltung der MLO-Gene und sämtlicher Kopien nahezu unmöglich.

Beim PILTON-Projekt wird versucht, Weizen mithilfe von CRISPR/Cas gleich gegenüber vier Pilzkrankheiten resistent zu machen. Dazu gehören Braunrost, Gelbrost, Septoria und Fusarium. Erste Feldversuche finden im Jahr 2022 statt. Falls sie gelingen, könnten die pilzresistenten Weizensorten dazu beitragen, dass weniger Pflanzenschutzmittel ausgebracht werden müssen. Diese Weizensorten wären für den Schweizer Markt besonders interessant. Die Liste von Forschungsprojekten und möglichen Anwendungen ist lang. swiss-food.ch hat zehn interessante Anwendungen für die Schweiz identifiziert.


Bestehendes verbessern

Die Genschere CRISPR/Cas ist in der Schweizer Landwirtschaft angekommen. Trotz ihres grossen Potenzials gilt es gemäss Bruno Studer jedoch festzuhalten, dass CRISPR/Cas nicht die gesamte Pflanzenzüchtung revolutionieren wird. Viele, insbesondere komplexe Editierungen sind auch mit CRISPR immer noch sehr schwierig durchzuführen. Zudem lässt sich die Genschere auch nicht bei allen Pflanzen anwenden. Die Genom-Editierung stellt jedoch ein wichtiges neues Werkzeug auf dem Weg zu einer ressourceneffizienteren Landwirtschaft dar. Es wird vor allem dort nutzbringend eingesetzt werden können, wo die klassischen Züchtungsmethoden an ihre Grenzen stossen.

Das ist insbesondere bei genetisch komplexen Kulturpflanzen wie dem Weizen (sechs Genomkopien) oder der Kartoffel (vier Genomkopien) der Fall. Aber auch bei Kulturen, wo der konventionelle Züchtungsprozess extrem lange dauert, wie zum Beispiel beim Apfel. Die Genom-Editierung ist nicht zuletzt auch eine grosse Chance, um bestehende und auf dem Markt etablierte Sorten zu optimieren und auch bei veränderten Klimabedingungen anbaufähig zu halten. Diese Sorten würden mit klassischer Kreuzung zerfallen und ihre Eigenschaften verlieren.

Ähnliche Artikel

«Natürlich heisst nicht unbedingt nachhaltig»
Wissen

«Natürlich heisst nicht unbedingt nachhaltig»

Um die wachsende Weltbevölkerung mit gesunder und nachhaltig produzierter Nahrung versorgen zu können, sind wir auf optimierte Lebensmittel angewiesen. Diese werden von Konsumentinnen und Konsumenten jedoch als «künstlich» – und damit «unnatürlich» – wahrgenommen. Und Natürlichkeit wird bevorzugt. Doch sind vermeintlich «natürliche» Produkte auch gesünder und nachhaltiger? Drei Referate gingen am Swiss-Food Talk der Optimierung von Lebensmitteln auf den Grund.

Wie ein Start-up seine Erfindungen schützt
Wissen

Wie ein Start-up seine Erfindungen schützt

Das Thema Fleischersatz ist auch in der Schweiz in aller Munde. Ganz vorne dabei unter den Herstellern ist das Schweizer Start-up Planted. Der Erfolg basiert auch auf dem konsequenten Schutz des geistigen Eigentums.

Trockentoleranter Weizen aus Argentinien
Wissen

Trockentoleranter Weizen aus Argentinien

Weltweit machen Hitzewellen den Anbau von Pflanzen zu einer grossen Herausforderung. Wassermangel und Trockenheit führen zu immensen Ernteverlusten für die Landwirtschaft. Weil Trockenperioden künftig häufiger werden, hat die Suche nach Sorten mit geringerem Wasserbedarf oberste Priorität. Ein trockentoleranter Weizen aus Argentinien verspricht grosses.

Kreislaufwirtschaft in der Nahrungsmittelproduktion
Wissen

Kreislaufwirtschaft in der Nahrungsmittelproduktion

Wiederverwenden anstatt Wegwerfen: In vielen Wirtschaftszweigen gewinnt die Kreislaufwirtschaft an Bedeutung. Auch die landwirtschaftliche Produktion muss sich künftig vermehrt in Kreisläufen abspielen. Das gilt insbesondere für die Bodennutzung, Düngerherstellung und Futtermittelproduktion.

Weitere Beiträge aus Wissen