The great benefits of biotechnology in agriculture

The great benefits of biotechnology in agriculture

Bioengineered crops have been cultivated in many parts of the world for around 25 years. Several publications bear witness to the great benefits of biotechnology in agriculture. The cultivation of the plants has a positive effect on the environment, the climate and yields for farmers.

Wednesday, January 18, 2023

Agriculture has been using bioengineered plant varieties since 1996. Biotech varieties are now planted on 13 percent of the world's arable land. Soy, corn, cotton and rapeseed account for the largest fractions of this volume. The British agricultural economist Graham Brookes has examined the economic and ecological effects of cultivation in the period from 1996 to 2020 in several publications in specialist journals.


Higher yields

His findings paint a clear picture. The cultivation of bioengineered varieties contributes to significantly higher yields and thus to higher incomes for farmers. In the period under examination, one billion additional tons of food, animal feed and fiber crops were produced. Yields of insect-resistant corn were, on average, 17 percent higher than conventional crops. The same applies for cotton that was genetically engineered to improve resistance to certain harmful insects. Harvests increased by an average of 14.5 percent.


Less crop protection needed

However, biotechnology provides more than just larger harvests. Thanks to crops endowed with resistance to insect pests, farmers also had to apply fewer insecticides. In the period between 1996 and 2022, a total of 7.5 million tons of pesticides could be dispensed with. This corresponds to 1.5 times the amount used in China every year. Where biotech varieties were grown, the use of pesticides was reduced by an average of 7.2 percent. For cotton and corn, the amount of insecticides applied fell by 30 and 41 percent respectively.


Lower CO2 emissions

The cultivation of genetically modified plants also has a positive effect on CO2 emissions. Since the plants are more resistant to pests, tractors do not have to be driven over the fields so often. This saves diesel and CO2. Cultivating varieties that are tolerant to specific herbicides also allows gentler weed control. Thanks to the use of herbicides, the soil does not have to be plowed as often and thus binds more carbon. Many farmers were able to switch to plowless cultivation systems. In 2020, such cultivation methods saved 23.6 million kilograms of CO2. This corresponds to the annual CO2 emissions of around 15 million cars.


Reduced space requirement

Biotechnology has also contributed to more efficient land management. Due to the significantly higher yields compared to conventional cultivation methods, biotech varieties occupy less land. In order to maintain global yields of soybeans, corn, cotton and canola without biotechnology, an additional 234,000 square kilometers of cultivated land would be required. This corresponds to about six times the area of Switzerland.

Biotechnology is also of great benefit to smallholders

Contrary to popular belief, biotechnology in agriculture can also help small farmers to protect their harvests better, as shown by the use of genetically modified eggplants, for example. The farmers have to spray far fewer insecticides, can harvest more and their income has also increased significantly, as the example of Bangladesh shows. In this specific case, Bt (Bacillus thurigiensis), which is approved as a pesticide in organic farming, was bred into the eggplant using transgenetics so that it can protect itself. In cooperation with other institutions, ETH researchers have identified the gene that provides resistance against the dreaded mosaic disease in cassava. Through genome editing, this staple food, which is extremely important in Africa and Southeast Asia and mostly grown by smallholders, could be successfully protected from this viral disease.

Related articles

When the anti-genetic engineering lobby is in charge
New Breeding Technologies

When the anti-genetic engineering lobby is in charge

A Tages-Anzeiger journalist gets caught in the threads of the anti-genetic engineering lobby and stumbles into unscientific territory. He writes about the fact that a politically controversial word is missing from a bill and embezzles a word himself when calling witnesses. A current example that shows how the choice of words can influence the perception of an issue.

As if there was no time limit in this country
New Breeding Technologies

As if there was no time limit in this country

The EU has been stuck on the regulation of new breeding technologies for years. Switzerland is also missing out on developments. While innovative approaches are already being used commercially worldwide, Europe and Switzerland lack clear rules – with far-reaching consequences for local farmers, breeders and seed propagators, as well as for global trade.

When surveys create fear
New Breeding Technologies

When surveys create fear

Surveys on technologies such as genetic engineering often focus on risks and spread panic instead of promoting a balanced discussion of the pros and cons. A striking example is the environmental indicator of the Federal Statistical Office. Social scientist Angela Bearth is highly critical of the survey.

More agrobiodiversity thanks to genome editing
New Breeding Technologies

More agrobiodiversity thanks to genome editing

It is often wrongly claimed that new breeding technologies such as genome editing restrict diversity in the seed market. A new study shows that the opposite is the case. Genome editing promotes agrobiodiversity.

More contributions from New Breeding Technologies